ВЛИЯНИЕ УВЛАЖНЕНИЯ НА ЭЛЕКТРИЧЕСКУЮ ПРОЧНОСТЬ ПРОДОЛЬНОЙ ИЗОЛЯЦИИ ОБМОТОК СИЛОВЫХ ТРАНСФОРМАТОРОВ

В. И. РЫЖЕНКО, В. В. СОКОЛОВ, инженеры
ПО «Запорожтрансформатор»

В последние годы в энергосистемах отмечались случаи отказов продольной изоляции обмоток силовых трансформаторов 35—110 кВ. Специфические обстоятельства возникновения отказов при рабочем напряжении и низкой температуре окружающей среды [Л. 1] породили гипотезы о механизме возникновения пробоя изоляции, связанном с образованием в масле при обычных величинах влагосодержания эмульгированной влаги при понижении температуры, ее замерзании, вспышением ледяных включений и возникновением локальных зон со сниженной электрической прочностью. Для повышения надежности трансформаторов предлагался ряд мер, в том числе введение требования об обязательном прогреве изоляции перед включением.

С целью предупреждения возникновения отказов выполнена работа, включающая анализ опыта эксплуатации большого числа трансформаторов, определение вероятной степени увлажнения изоляции, исследование на моделях влияния влажности на электрическую прочность продольной изоляции обмоток в широком интервале изменения температуры.

Анализ опыта эксплуатации показывает, что отказы продольной изоляции представляют весьма редкое явление в крупных трансформаторах напряжением 220 кВ и выше и характерны главным образом для трансформаторов 35 и особенно 110 кВ, в которых напряженность электрического поля в изоляции существенно ниже. Удельное число отказов увеличилось после внедрения новой серии трансформаторов с быстродействующими устройствами РПН. Особенно для этих трансформаторов является некоторое увеличение электрических нагрузок на изоляцию регулировочных обмоток (РО). В старой серии трансформаторов с медленно действующими РПН применялись РО катушечного типа непрерывной намотки с рабочим напряжением между катушками не более напряжения регулировочной ступени \(U_{cm} \), а между соседними проводниками в катушке — не более э. д. с. витка. В новой серии применяются РО двух типов: слоевая — без масляных каналов с напряжением между проводниками, равным \(2U_{cm} \), а также многоходовая спиральная катушечная обмотка с масляными каналами между катушками 4 — 8 мм и напряжением между катушками (5 — 6) \(U_{cm} \), а между проводниками в катушке \(U_{cm} \).

Установлено, что отказы изоляции наблюдаются главным образом у трансформаторов с РО катушечного типа, имеющими по сравнению со слоевыми меньшее напряжение между проводниками, но с масляными каналами, рабочее напряжение на которых составляет 6—7 кВ. Анализ надежности, выполненный примерно для 1600 трансформаторов 110 кВ серий ТДН, ТРДН, ТРДЦН с РО катушечного типа с суммарной наработкой около 6500 трансформаторов-лет, показал, что отказы имеют приработочный характер, причем основной причиной является повреждение изоляции РО.

Результаты расчетов [Л. 2] позволили установить соответствие статистических данных распределению Вейбулла с параметром формы \(b=0,3 \) для интенсивности отказов по всей совокупности причин и \(b=0,19 \) для отказов изоляции РО. Из этого следует, что причины отказов связаны с дефектами, возникающими до включения трансформаторов в работу либо в начальный период эксплуатации.

Замечено, что отказы возникали при рабочем напряжении из-за пробоя изоляции между катушками, для чего требовалось снижение электрической прочности более чем в 3—4 раза. Большая часть отказов наблюдалась в зимнее время после включения трансформаторов из холодного состояния, хотя отмечены случаи отказов и летом. Результаты анализов показывают, что наиболее вероятной причиной повреждения изоляции явилось ее увлажнение, точнее, наличие воды в масле.

Часто в отказавших трансформаторах обнаруживали воду или лед. Так, в трансформаторе ТДН-16000/110 на дне бака был обнаружен лед толщиной до 20 мм. В другом однотипном
трансформаторе, отказавшем после месяца работы из-за пробоя между нижними катушками РО, наблюдались скопления льда в экранах вводов, на планках отводов и отводах РО. В трансформаторе ТРДН-25000/110, отказавшем через 1,3 года работы в летнее время из-за местного выгорания трех верхних катушек РО, обнаружено большое количество воды в зоне установки выхлопной трубы, на дне бака и на прессующем кольце поврежденной обмотки.

Таким образом, опыт эксплуатации показал, что в рассматриваемых трансформаторах могут возникать условия, при которых увлажнение приводит к снижению электрической прочности изоляции, достаточному для возникновения пробоя при рабочем напряжении.

Отказы продольной изоляции из-за увлажнения отмечались также в некоторых трансформаторах со слоевыми РО. Однако в таких трансформаторах повреждались только участки изоляции с масляными каналами (промежутками), например, пробой между регулировочными отводами.

Для определения влияния влаги на электрическую прочность продольной изоляции при воздействии переменного напряжения с учетом изменения температуры были проведены специальные исследования на моделях межкатаушечной изоляции.

Каждая модель состояла из двух витков-катушек, намотанных из обмоточного провода сечением 5,5X1,0 мм без учета изоляции, внутренний диаметр катушек составлял 150 мм. Модели собирались по 15 штук в одну колонну (см. рис. 1), осевые неиспытуемые каналы между моделями составляли 10 мм. Нижние витки каждой модели соединялись между собой и заземлялись через шпильку, расположенную на стенке испытательного бака. Отпайки от верхних витков выводились на крышку бака через проходные шпильки, к которым при испытаниях подводилось напряжение от испытательной установки АИИ-70.

![Рис. 1. Размещение моделей межкатаушечной изоляции в испытательном баке.](image)

Испытывались модели трех видов (рис. 2) Вид I — имитация катушечной обмотки, между витками с помощью дистанционной прокладки создавался осевой канал $h_x = 4\text{мм}$, толщина витковой изоляции δ_x составляла 1,35 мм. Модели типа II выполнялись также по типу катушечной обмотки с осевыми каналами 4 мм, но без витковой изоляции. Модели типа III были без каналов и имитировали слоевую обмотку.

Испытательный бак заполнялся трансформаторным маслом ГОСТ 982-68 ТКп влагосодержанием $\omega_x = 0,003\%$. Указанная величина в мировой практике считается максимально допустимой при эксплуатации трансформаторов напряжением 110 кВ и ниже [Л. 3]. Кроме того, ранее было установлено [Л. 4], что в промежутках с неизолированными электродами при таком влагосодержании масла наблюдается значительное (в 3—4 раза) снижение электрической прочности масла при понижении температуры.

Бак помещался в термобарокамеру. Исследования проводились в диапазоне температур от +20 до —30°С. Изоляция моделей испытывалась по ступенчатой однominутной методике без отхода между ступенями. Исследовалось изменение электрической прочности при трех состояниях изоляции:
после термовакуумной обработки с влагосодержанием твердой изоляции $\omega_a = 1,0\%$;
несущая изоляция (в состоянии поставки) $\omega_a = 5,0\%$;
изоляция с сильным поверхностным увлажнением, допускающим при изменении температуры насыщение влагой масла в испытуемых промежутках.

Рис. 2. Влияние влаги и изменения температуры на электрическую прочность моделей межкатаушечной изоляции при переменном одноминутном напряжении 50 Гц.

1,1',1" — модели катушечной обмотки с толстой витковой изоляции 1,35 мм соответственно после термовакуумной обработки ($\omega_a = 1\%$), несущей ($\omega_a = 5\%$) и намороженным налетом иен; 2 — модели катушечной обмотки без изоляции с налетом иена; 3 — модели слоев обмотки с налетом иена.

Последнее состояние достигалось следующим образом. Модели охлаждались в термобарокамере до температуры — $30 \div 40^\circ C$, затем выдерживались 1—2 мин при комнатной температуре и снова помещались в термобарокамеру. Такой процесс повторялся 3—4 раза. При этом на поверхностях моделей конденсировались влага в виде тончайшего налета иена.
Далее модели погружались в бак с маслом, имеющим температуру — $30^\circ C$; бак устанавливался в термобарокамеру, где создавалась требуемая температура. Для определения прочности при положительных температурах 10 и $20^\circ C$ увлажненные и охлажденные модели погружались в масло, имеющее соответствующую температуру (+10 или +20°C), и выдерживались до выравнивания температур.
Результаты исследований приведены в таблице и на рис. 2. Анализ результатов показывает, что для моделей межкатаушечной изоляции с разной степенью увлажнения характер зависимости $U_{np} = f(t)$ одинаков и совпадает с аналогичной зависимостью для масла в неизолированных электродах.
Во всех случаях испытания моделей I и II вида пробивался масляный канал, следов перекрытия по прокладкам не отмечено. Снижение электрической прочности увлажненных моделей I вида при температуре — $5^\circ C$ составило около 10% (кривая 1) по сравнению с прочностью при температуре $+20^\circ C$. Для моделей с несущей изоляцией пробивное напряжение при температуре $+20 \div +25^\circ C$ по сравнению с малоувлажненной практически не изменилось, однако зависимость $U_{np} = f(t)$ проявилась сильнее и общее снижение U_{np} в области наименьших значений (примерно при $t(=-5^\circ C)$ составило более 20% и, кроме того, в этой области существенно увеличилось разброс пробивных напряжений.
Для моделей с сильным поверхностным увлажнением электрическая прочность снизилась примерно в 5 раз во всем исследуемом температурном диапазоне (кривая 1'). Примерно такие же пробивные напряжения получены и для моделей вида II без витковой изоляции, откуда следует, что при условии насыщения межкатаушечных каналов влагой наличие витковой изоляции не оказывает существенного влияния на пробивное напряжение. Пробивное напряжение моделей слоевых обмоток при сильном поверхностном увлажнении снизилось по сравнению с сухим состоянием изоляции примерно на 60%. Однако даже при таком снижении сохраняются достаточные запасы электрической прочности при принятых в конструкциях воздействиях рабочего напряжения. Результаты исследования моделей слоевых обмоток подтвердили ранее полученные в ВИТ зависимости
электрической прочности витковой изоляции от степени ее увлажнения. В отличие от изоляции с масляными промежутками снижение прочности витковой изоляции при увлажнении происходит сравнительно постепенно и при влагосодержании 4—5% электрическая прочность при одноминутном воздействии снижается на 20—30%.

Таким образом, электрическая прочность увлажненной продольной изоляции обмоток при воздействии напряжения промышленной частоты так же, как и сухой изоляции, определяется прочностью масляных каналов. Увлажненная целлюлозная изоляция является источником обогащения влагой масла в каналах между катушками. При увлажнении масла и содержащихся в нем примесей возможно снижение электрической прочности до величины, достаточной для пробоя масляного канала между катушками при рабочем напряжении. Возникновение такого пробоя более вероятно при низких температурах масла вследствие повышения его относительной влажности. Результаты исследования показывают, что практически условия для критического снижения прочности возникают лишь при весьма сильном увлажнении масла.

<table>
<thead>
<tr>
<th>Состояние изоляции</th>
<th>Тип модели по рис.2</th>
<th>t, °C</th>
<th>U_{np}, кВ</th>
<th>σ, %</th>
<th>Число опытов</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega_v = 1%); (\omega_o = 0,003%)</td>
<td>I</td>
<td>+22</td>
<td>58,5</td>
<td>12,3</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+15</td>
<td>54,4</td>
<td>5,5</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-3</td>
<td>52,8</td>
<td>6,9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-5</td>
<td>49,2</td>
<td>12,1</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-20</td>
<td>57,0</td>
<td>8,3</td>
<td>8</td>
</tr>
<tr>
<td>(\omega_v \approx 5% ;) (\omega_o = 0,003%)</td>
<td>I</td>
<td>+25</td>
<td>60,0</td>
<td>11,3</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+20</td>
<td>46,9</td>
<td>9,8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-5</td>
<td>39,0</td>
<td>18,6</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-20</td>
<td>52,7</td>
<td>4,5</td>
<td>15</td>
</tr>
<tr>
<td>Намороженный слой влаги, (\omega_v = 0,003%)</td>
<td>I</td>
<td>+20</td>
<td>12,3</td>
<td>9,8</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+1</td>
<td>11,7</td>
<td>14,7</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-9</td>
<td>9,6</td>
<td>11,4</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-15</td>
<td>8,7</td>
<td>10,1</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-30</td>
<td>15,3</td>
<td>15,7</td>
<td>15</td>
</tr>
<tr>
<td>III</td>
<td>+10</td>
<td>17,5</td>
<td>10,5</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2</td>
<td>17,8</td>
<td>11,2</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-14</td>
<td>22,5</td>
<td>10,5</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-22</td>
<td>22,5</td>
<td>8,7</td>
<td>7</td>
</tr>
<tr>
<td>II</td>
<td>+10</td>
<td>15,9</td>
<td>5,6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-3</td>
<td>12,1</td>
<td>5,0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-12</td>
<td>11,9</td>
<td>5,5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-23</td>
<td>15,5</td>
<td>7,7</td>
<td>10</td>
</tr>
</tbody>
</table>

Результаты изучения процессов увлажнения и обследования фактического состояния изоляции трансформаторов, частично приведенные в [Л. 5], подтверждают возможность сильного увлажнения масла перед включением трансформаторов в работу и в эксплуатации. Целесообразно выделить следующие причины такого увлажнения: васывание влаги в процессе хранения трансформаторов в транспортном состоянии; длительная разгерметизация надмасляного пространства при монтаже; скопление воды или льда в масляных полостях плохо промытых элементов системы охлаждения; нарушение герметичности уплотнений разъемов, не находящихся под давлением масла в эксплуатации.

Наиболее часто наблюдается первая из названных причин. Следует отметить, что при
хранении трансформаторов, недолитых маслом, вероятности проникновения влаги в бак существенно увеличивается из-за больших колебаний давления в надмасляном пространстве при температурном изменении объема масла в баке. Количество влаги, проникающей в бак в виде водяных паров, содержащихся в воздухе, невелико и существенно только при длительном хранении. Однако, если герметизация уплотнений недостаточная, возможно непосредственное всасивание в баке водяной эмульсии либо воды, скопившейся над разъемами бака, что подтверждается опытом.

Так, трансформатор ТРДНС-25000/35 хранился в смонтированном состоянии, но недолитый маслом в течение 4 мес. с нарушенным уплотнением вывода НН. За указанный период в бак проникло более 6 л воды. В другом случае за 7 мес. хранения трансформатора ТРДНС-25000/10 внутрь бака через неплотности в разъемах РПН проникло более 300 л воды.

В некоторых случаях причиной увлажнения является длительная разгерметизация надмасляного пространства в процессе проведения монтажных работ на трансформаторе, обмотки которого покрыты маслом. Следует отметить, что погружение твердой изоляции в масло вызывает известное замедление процессов поглощения ею влаги, однако не препятствует проникновению влаги внутрь трансформатора. К сожалению, в нормативных материалах длительность и условия разгерметизации надмасляного пространства не оговорены.

Нарушение герметичности в эксплуатации, как правило, происходит в местах уплотнения наконечников вводов протяженного типа, а также уплотнения выхлопной трубы. Такие нарушения могут приводить к всасыванию большого количества влаги за весьма короткое время. Так, в трансформаторе ТДН-16000/110 при монтаже были плохо закреплены наконечники вводов. Через месяц при внутреннем осмотре (после отключения, вызванного пробоем межкатаушечной изоляции РО) было обнаружено большое количество воды и льда на экранах вводов, на отводах и в других местах в зоне установки вводов.

Опыт эксплуатации показывает, что традиционные методы диагностики в большинстве случаев не выявляют наличия местных скоплений воды, особенно в холодном и малоподвижном масле. Так, в указанном ранее случае даже при наличии на дне бака около 300 л воды пробивное напряжение пробы масла, взятой при температуре +10°C, о стандартном маслопробоинике составляло 48 кВ. Влага была обнаружена только после прогрева и интенсивного перемешивания масла, а также после слива масла при внутреннем осмотре. Величины сопротивления изоляции и тангенса угла потерь для контроля увлажнения малоэффективны [Л. 5], они определяются главным образом проводимостью масла и при влагосодержании картона менее 2 — 2,5% позволяют выявлять только некоторые случаи сильного увлажнения изоляционных деталей, шунтирующих основную изоляцию обмоток, например планки отводов, детали РПН и др. Иногда о повышении влажности масла может свидетельствовать понижение сопротивления изоляции при уменьшении температуры, что, однако не учитывается в нормативных материалах.

Указанные обстоятельства объясняют причину возникновения отказов изоляции трансформаторов 35—110 кВ, конструкция которых чувствительна к повышенному содержанию влаги в масле. В отличие от крупных трансформаторов к трансформаторам 35 и 110 кВ предъявляются менее жесткие требования по контролю их герметизации. Монтаж их производится без слива масла из бака, а оценка качества изоляции допускается при малоподвижном холодном масле.

Для повышения надежности изоляции целесообразно пересмотреть существующие методы подготовки трансформаторов к включению в работу. Особое внимание следует уделить предотвращению проникновения влаги внутрь бака путем создания и поддержания постоянного избыточного давления масла либо сухого газа в баке на всех этапах хранения и монтажа трансформатора.

Контроль герметичности уплотнений следует осуществлять непосредственно после прибытия трансформатора, а также после выполнения работ, связанных с разгерметизацией надмасляного пространства бака. Критерием удовлетворительной герметизации может быть неизменность избыточного давления сухого газа в баке 25—30 кПа в течение 3—4 ч. Для контроля увлажнения изоляции в процессе хранения трансформаторов в транспортном состоянии наиболее целесообразно применение метода измерения температуры точки росы газа в надмасляном пространстве бака, значение которой при удовлетворительному состоянии изоляции должно быть не выше —20÷—30°C.
Эффективным методом контроля изоляции является также измерение влагосодержания масла, при этом допустимая величина при температуре +20°C и более может быть установлена на уровне 0,002%. После полного монтажа трансформатора целесообразно предусмотреть циркуляцию масла через маслоочистительные установки для удаления возможной влаги и механических примесей.

Выводы

1. Электрическая прочность продольной изоляции обмоток при увлажнении определяется прочностью масляных каналов. При значительном увлажнении масла возможно снижение прочности в несколько раз до пробоя при рабочем напряжении. При обычном влагосодержании масла (меньше 0,003%) снижение прочности межкатушечной изоляции с изменением температуры составляет 20 — 30%.

2. Предложены следующие мероприятия по предупреждению опасного увлажнения изоляции: поддержание избыточного давления масла или сухого газа в баке трансформатора в процессе хранения; контроль герметичности уплотнений посредством создания в баке избыточного давления после транспортировки, а также после выполнения работ, связанных с разгерметизацией надмасляного пространства бака; контроль температуры точки росы газа в надмасляном пространстве бака; контроль влагосодержания масла; введение очистки масла в баке полностью смонтированного трансформатора.

Список литературы

1. Уваров О. И., Горожанкин В. И. Особенности эксплуатации силовых трансформаторов на Крайнем Севере и требования к трансформаторам для холодного климата.— В кн.: Надежность и электробезопасность электрооборудования в районах Крайнего Севера. Норильск. - 1977.
2. Соколов В. В., Лукашук В. А. Методы оценки и обеспечения надежности силовых трансформаторов. — Известия АН СССР. Энергетика и транспорт, 1980, № 1.
3. Правила по применению и оценке качества электроизоляционных масел/ Публикация МЭК, 1977, № 422.